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A Bayesian reanalaysis of the quasar dataset
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Abstract. We investigate recent claims of spatial variation in the fine structure constant on
cosmic distance scales based on estimates of its extra-galactic–to–on-Earth ratio recovered
from “many multiplet” fitting of quasar absorption spectra. To overcome the limitations of
previous analyses requiring the assumption of a strictly unbiased and Normal distribution
for the “unexplained errors” of this quasar dataset we employ a Bayesian model selec-
tion strategy with prior-sensitivity analysis. A particular strength of the hypothesis testing
methodology advocated herein is that it can handle both parametric and semi-parametric
models self-consistently through a combination of recursive marginal likelihood estimation
and importance sample reweighting. We conclude from the presently-available data that
the observed trends are more likely to arise from biases of opposing sign in the two tele-
scopes used to undertake these measurements than from a genuine large-scale trend in this
fundamental “constant”.
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1. Introduction

The fine structure constant, α, plays a crucial
role in setting the scale for all electromagnetic
interactions in quantum electrodynamics; and
thereby the scale of the fine structure splitting
in atomic spectral lines by which it is named.
Although laboratory experiments based on the
comparison of precise atomic clocks (Forier
et al. 2007; Rosenband et al. 2008) and the
nuclear modelling of samarium isotopes from
the Oklo natural fission reactor (Shlyakhter
1976; Damour and Dyson 1996) have failed
to recover evidence for spatial and/or tempo-
ral variation of α locally (i.e., on the scale
of the Earth and its Solar orbit), the possi-
bility of variation on cosmic scales is not so
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well-constrained. In particular, although pre-
Millennial analyses of quasar emission and
absorption spectra (Savedoff 1956; Bahcall,
Sargent and Schmidt 1967; Ivanchik, Potekhin
and Varshalovich 1999) were ultimately able to
establish a bound of less than one part in ten-
thousand on its fractional variation at cosmo-
logical redshifts (∼1-3) with respect to its lab-
oratory benchmark, ∆α/α ≡ (α−α0)/α0, more
recent studies by Webb et al. (2011) and King
et al. (2012) have claimed “4σ” evidence for
spatial variation at an order of magnitude be-
low this level using the “many multiplet” anal-
ysis technique.

The basis for the “many multiplet” tech-
nique (Dzuba, Flambaum and Webb 1999) is
the model-based comparison of relative fre-
quency shifts between multiple ionic spec-
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tral lines; with the positions of α-insensitive
species used as reference points for the shift-
ing of their (theoretically) α-sensitive coun-
terparts. The accuracy of such “many muli-
plet” ∆α/α estimates though depends on both
the reliability of the absorption profile model
adopted (e.g. whether thermal or turbulent
broadening should be assumed) and the accu-
racy of the instrumental calibration; the mag-
nitude of the former being more easily gauged
(via maximum likelihood statistical methods)
than that of the latter (which is effectively
unknown for any single observation). In the
Webb et al. team’s own analysis of their quasar
dataset, consisting of ∆α/α estimates from 295
intervening absorbers on 131 quasar sightlines
observed with the VLT and Keck telescopes,
it was revealed that “unexplained errors”, in-
cluding the contribution of the latter calibra-
tion uncertainties, were (at least for a large sub-
set of these absorbers) of similiar magnitude to
their “explained errors”. Hence, the statistical
modelling of both error components is neces-
sary for robust inference and hypothesis testing
with this dataset.

In the Webb et al. (2011) and King et al.
(2012) studies the “unexplained errors” of each
instrumental subgroup in the quasar dataset
were assumed to originate from a hidden error
term of strictly unbiased (zero mean), Normal
form; and a trimmed least squares procedure
was then used to estimate its standard devia-
tion. However, with the equator of the Webb
et al. team’s alleged dipole signal running
surprisingly close to that of the Earth—and
thereby providing a near-perfect subdivision
of the quasar sample into its VLT and Keck
subgroups—a skeptical interpretation of their
result would be that biases of opposing sign
in the error terms belonging to each might be
contributing the apparent dipole effect instead.
Hence, we have sought to distinguish between
these competing hypotheses through Bayesian
model selection. The full mathematical treat-
ment of this work, as presented at the Varying
Fundamental Constants and Dynamical Dark
Energy Conference (Sesto, Italy, 2013), is
available in a pair of research papers which will
be referred to as Paper I (Cameron & Pettitt
2013a) and Paper II (Cameron & Pettitt 2013b)

throughout. Here we give a more qualitative
description of our model selection methodol-
ogy, which we hope might serve as a useful
summary and introduction to the topic.

2. Bayesian model selection
methodology

The aim of Bayesian model selection is to
identify the most likely hypothesis to explain
the observed data using a quantitative evalu-
ation metric comparing their prior predictive
accuracies; in effect, favouring model simplic-
ity over model complexity. The key quantity
for Bayesian model selection is the posterior
Bayes factor for pairwise comparision of hy-
potheses, defined as the ratio of their marginal
likelihoods, Z1/Z0. The marginal likelihood in
turn being the likelihood, L(y|θ), of the ob-
served data under the given hypothesis aver-
aged over one’s prior probability for its govern-
ing parameters. For problems where the prior
admits an ‘ordinary’ probability density with
respect to Lebesgue measure, π(θ)dθ, we have
simply, Z =

∫
Ω

L(y|θ)π(θ)dθ where the range of
integration is the entire parameter space of the
prior; and more generally (as will be the case
for our semi-parametric error model) we have
an integration with respect to the prior mea-
sure, Z =

∫
Ω

L(y|θ){dPprior(θ)}. The product of
this Bayes factor with our prior probability ra-
tio for the two hypotheses, Π1/Π0, gives their
posterior odds ratio, Π1/Π0 × Z1/Z0.

Applications of Bayesian model selection
methods are becoming increasingly popular in
astronomy and cosmology (e.g. Trotta 2007;
Feroz & Hobson 2013) and there exist var-
ious astronomically-themed introductions to
this technique (e.g. Trotta 2008); although one
cannot over-state the value of the many clas-
sic statistical references as a guide for the
newcomer (esp. Kass & Raftery 1995 and
Wasserman 2000). The two greatest practical
challenges for robust Bayesian model selec-
tion are () the accurate computation of the re-
quired marginal likelihoods (or, at least, their
ratios), and () quantification of the inherent
sensitivity of the posterior Bayes factor to the
choice of parameter priors on each hypothesis.
While much thought is often given to the first
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problem in astronomical model selection stud-
ies, the second is not generally so well recog-
nised. Below we outline a two-stage Monte
Carlo integration strategy for addressing both
challenges in an easily applied, computation-
ally efficient and self-consistent manner.

2.1. Recursive marginal likelihood
estimation

With the marginal likelihood integral not
typically admitting a simple analytical solu-
tion it becomes necessary to seek a numer-
ical approximation for use in computing the
Bayes factor. And, with the efficiency of de-
terministic (grid-based) approximation strate-
gies, such as numerical quadrature, limited
in high-dimensional parameter spaces (N &
3), the standard approach is to use Monte
Carlo-based integration. Popular versions of
the Monte Carlo approach to marginal likeli-
hood estimation in astronomy include nested
sampling (cf. Mukherjee et al. 2006; Feroz
& Hobson 2008; Brewer et al. 2009) and the
Savage-Dickey density ratio (Trotta 2007)—
with the former particularly suited to mod-
els with (transformably) uniform priors and
the latter restricted to embedded models with
shared parameters. The technique we favour
for our work is that of the recursive approach
(see Cameron & Pettitt 2013c for a review) as
represented by biased sampling (Vardi 1985)
and reverse logistic regression (Geyer 1994).
The advantages of this particular method being
that the marginal likelihood can be computed
directly from the likelihood draws under tem-
pered Markov Chain Monte Carlo (MCMC)
sampling of the posterior (regardless of prior
structure; including for stochastic process pri-
ors), and that these draws may then be effi-
ciently re-used for prior-sensitivity analysis via
importance sample reweighting.

The particular version of recursive
marginal likelihood estimation that we use
here is as follows. First, we explore via MCMC
the tempered posterior, ∝ π(θ)L(y|θ)β j dθ (or
∝ L(y|θ)β j {dPprior(θ)} more generally), saving
the drawn θi and Li = L(y|θi) at each point,
for a series of (typically about twenty) tem-
peratures, β j, spanning the prior (β1 = 0)

and posterior (βm = 1). Applying the
globally-convergent, iterative update scheme
of Vardi (1985) we recover estimates for
the desired marginal likelihood, Z = Zm,
and the corresponding normalising constants
of the tempered bridging distributions, Z j
(1 < j < m):

Ẑ j =

n∑

i=1

Lβ j

i /[
m∑

k=1

nkLβk
i /Ẑk]

 . (1)

While only Ẑ is specifically required for Bayes
factor computation under our default priors,
the remaining Ẑ j are not unimportant since
they facilitate our importance sample reweight-
ing scheme for prior-sensitivity analysis.

2.2. Importance sample reweighting for
prior-sensitivity analysis

With the Bayes factor directly dependent on
the choice of parameter priors on each model
an essential stage of any Bayesian model selec-
tion analysis is to quantify the inherent degree
of prior-sensitivity (cf. Kass & Raftery 1995).
One way to do this is to recompute Bayes fac-
tors under a range of alternative priors, typi-
cally set by moderate rescalings of the hyper-
parameters controlling one’s prior forms. At
face value this seems inevitably like a com-
putationally expensive exercise since it calls
for repeated marginal likelihood estimation.
However, with our tempered posterior draws
providing a thorough sampling of the param-
eter space at and more broadly around the lo-
cation of the posterior mode(s)—and the pos-
terior being typically less sensitive to prior
change than the marginal likelihood itself—it
makes sense to reuse these in some way.

In order to do this we utilise the esti-
mated normalization constants, Ẑ j, computed
as above to define a pseudo-mixture density,
f (θ)dθ =

(∑m
j=1 L(y|θ)β j/Ẑ j

)
π(θ)dθ (or pseudo-

mixture measure, more generally, {dF(θ)} =(∑m
j=1 L(y|θ)β j/Ẑ j

)
{dPprior(θ)}), from which we

imagine our tempered likelihood draws to have
originated. Importance sample reweighting of
these draws according to the ratio of den-
sities, πalt(θ)/ f (θ), (or, more generally, the
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Radon-Nikodym derivative; dPprior, alt
d f (θ)) be-

tween some alternative prior and our nominal
prior gives an estimate of the marginal likeli-
hood under the former:

Ẑalt = 1/n
n∑

i=1

Liπalt(θi)/ f (θi) (2)

[or Ẑalt = 1/n
n∑

i=1

Li
dPprior, alt

d f
(θi)]. (3)

Evidently this estimator requires no new like-
lihood function calls, often the most expensive
part of a modern Bayesian computer code.

3. Reanalysis of the quasar dataset

As stressed already in the Introduction, the
novelty of our Bayesian model selection re-
analysis of the quasar dataset is that we are
able to allow for the possibility of biased
and/or non-Normal “unexplained error” terms
in each instrumental subgroup; thereby relax-
ing the contested assumptions of the earlier
studies claiming a 4σ dipole significance. In
Paper I we chose (for simplicity) to restrict
our analysis to the regime of parametric mod-
elling, trialling only specific functional forms
for the “unexplained error” distribution; but
then in Paper II we extended our investigation
to the semi-parametric modelling regime us-
ing an “infinitely-flexible” mixture of Dirichlet
processes prior to represent the hidden system-
atic error on each ∆α/α datapoint.

3.1. Parametric error models

Four basic forms were examined here for the
“unexplained error” term, such that when con-
volved with the well-motivated Normal form
(cf. King et al. 2010) for the “explained
error” term the resulting total errors were
thus effectively: () strictly Normal; () Voigt
(or Cauchy); () skew-Normal; and () “bi-
modal”. In each case we also specifically iden-
tified and trialled separately a “biased” and
“unbiased” version via suitable hyperparame-
ter restrictions (e.g. for the strict Normal, that
its mean be also strictly zero for the “unbiased”
case, and free for the “biased” case).

3.2. Semi-parametric error model

The Dirichlet process, being an infinite-
dimensional extension of the familiar Dirichlet
distribution, constitutes a stochastic process
on the space of (atomic) probability distribu-
tions, and is thus a commonly-used tool for
non-parametric modelling in applied statistics
(see Ferguson 1973; and Ghosh 2010 for a
brief introduction). When combined with a
parametric density kernel, as represented here
by the Normal distribution of the “explained
error” term, the result is a semi-parametric
model most often encountered in clinical meta-
analysis studies. Prior specification for the
Dirichlet process is via the choice of a refer-
ence density and concentration index; and in
the mixture of Dirichlet processes setting one
may also specify hyperpriors on both the con-
trolling parameters of this reference density
and the concentration index itself; which we
elected to do as described in Paper II.

3.3. Marginal likelihoods and posterior
Bayes factors

For the purposes of our model selection anal-
ysis we identified three basic hypotheses for
the cosmic variation (or lack thereof) in α.
Namely, () the strict null (∆α/α = 0 every-
where); () the monopole null (∆α/α = m;
i.e. a fixed quasar-to-Earth offset); and () the
monopole plus r(z)-dipole model (a direction
and “lookback distance” dependent cosmic α
variation). After specifying well-motivated pri-
ors for the controlling parameters of these hy-
potheses we proceeded to estimate marginal
likelihoods for each, coupled in turn to each of
our candidate error terms. Within the restricted
class of “unbiased” error models (parametric
only) our marginal likelihood comparisons in-
deed strongly favoured the dipole hypothesis
over the monopole and null alternatives at a
Bayes factor of ∼300, in broad agreement with
the Webb et al. team’s original conclusions.
However, for all “unbiased” error models this
ranking of hypotheses was reversed, with the
strict null mildly favoured over the monopole
and dipole at a Bayes factor of up to ∼12.5.
And, more importantly, the marginal likeli-
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hoods for the null hypotheses under at least
two of our “biased” parametric models (the
Normal and skew-Normal error terms) was ac-
tually greater than that of the dipole hypothesis
under any of the “unbiased” models; again at a
moderate Bayes factor of ∼10.

Although the marginal likelihoods recov-
ered under our semi-parametric error model
were all significantly lower than those for
our preferred parametric models (owing to the
inherently broader range of prior predictives
for this maximally flexible error form) the
Bayes factor ordering of null over monopole
and dipole was nevertheless preserved. In this
sense our semi-parametric model may be seen
at this stage as primarily a robustness check
of our parametric analysis; but one may well
anticipate this error model eventually becom-
ing preferred with the addition of further data
straining the plausibility of a perfectly Normal
or skew-Normal (biased) distribution of “unex-
plained errors”.

To explore the prior-sensitivity of our
Bayes factors under the best of our “bi-
ased” parametric error models we applied the
above-mentioned importance sample reweight-
ing technique to recompute the marginal like-
lihoods under multiple rescalings of our key
hyperparameters (Paper I). We were thereby
able to demonstrate the preservation of hy-
pothesis rankings over a wide range of alter-
native prior choices, with a restriction of the
prior bias strength to less than one part in a
million ultimately deemed necessary to over-
turn our support for the null. In the case of
the semi-parametric error model we examined
the effect of changing the distributional form
of our Dirichlet process centering density from
Normal to Student’s t of varying degree. Once
again the robustness of our hypothesis rankings
was thereby confirmed; however, it is interest-
ing to note that we were actually able to in-
crease substantially the marginal likelihood of
our null hypothesis (and conversely to decrease
the marginal likelihoods of our monopole and
dipole hypotheses) by adopting a progressively
“fatter-tailed” reference (with a peak in the
former at a d. f . of 4). Hence, we stress that
although the semi-parametric model selection
approach does allow for the relaxation of some

important modelling assumptions it does not
entirely free the practioner from concerns of
prior-sensitivity.

4. Conclusions

We conclude from the presently-available data
that the observed trends are more likely to
arise from biases of opposing sign in the two
telescopes used to undertake these measure-
ments than from a genuine large-scale trend in
this fundamental “constant”. Nevertheless, to
strengthen these conclusions (beyond a Bayes
factor of ∼10 in favour of the null under our
skeptical interpretation) requires either more
∆α/α estimates from each telescope (partic-
ularly along equatorial sightlines, as well as
along the alleged dipole’s axes) or further cal-
ibration studies to constrain the instrumental
systematics.
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